CS 428: Fall 2010

Introduction to Computer Graphics

Texture mapping and filtering
Topic overview

- Image formation and OpenGL
- Transformations and viewing
- **Polygons and polygon meshes**
 - 3D model/mesh representations
 - Piecewise linear shape approximations
 - Illumination and polygon shading
- Modeling and animation
- Rendering
Topic overview

- Image formation and OpenGL
- Transformations and viewing
- **Polygons and polygon meshes**
 - 3D model/mesh representations
 - Illumination and polygon shading
 - **OpenGL rasterization: hidden surface removal, interpolation, texturing (all image-space!)**
- Modeling and animation
- Rendering
Topic overview

- Image formation and OpenGL
- Transformations and viewing
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation
- Rendering
 - OpenGL rasterization: hidden surface removal, interpolation, texturing (some sampling theory)
 - Raytracing and radiosity
Topic overview

- Image formation and OpenGL
- Transformations and viewing
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation
- Rendering
 - Object space hidden surface removal, bump mapping and other texture tricks
 - Raytracing and radiosity
Textures

- Reality provide a wide spectrum of geometric shapes and physical materials
 - Structures in wood, marble, wallpaper, clouds
 - Far-away background scenery, buildings and trees
- Modeling the exact geometric form of these objects is too complex and not necessary
 - No/small parallax effects for distant scenery + only cover a few pixels
 - Can be performed in a fragment shader (more later...)
Textures

- Make simple objects appear significantly more complex
- Model wall, mirror or window as planar surface
- Apply an image to the window to model the distant scenery
Texture mapping

- 2D-textures are functions that map points \((u,v)\) in texture space to \((r,g,b)\) colors:
 \[
 (r, g, b) = C_{\text{tex}}(u, v)
 \]
- The mapping describes how to decorate the surface
- For rendering, we need the inverse mapping from known \((x,y,z)\) coordinates to \((u,v)\) points:
 \[
 (u, v) = F_{\text{inv map}}(x, y, z)
 \]
Texture mapping

- Texture mapping uses barycentric coordinates
 - \((u,v)\) provided at vertices \texttt{glTexCoordXX(...)}

![Diagram of texture mapping](image)

Texture space

Object space

\(T(u,v)\)

\(O(x,y,z)\)

Mapping \(F_{\text{map}}\)

Inverses Mapping \(F_{\text{inv map}}\)
Texture mapping

- Mathematically, this is described by concatenation of two mappings

\[(r, g, b) = C_{\text{tex}} \left(F_{\text{inv map}} (x, y, z) \right) \]

- 3D-textures are functions that map points of \((u, v, w)\) space to \((r, g, b)\) colors

\[(r, g, b) = C_{\text{tex}} (u, v, w) \]
3D textures are known as **solid textures**
- Examples: wood and marmorite
- Interpretation: the shape is carved out of the \((u,v,w)\) texture space

\[
(r, g, b) = C_{\text{tex}} (u, v, w)
\]
Texture representation

Discrete textures

- Grid of color values (texels)
- Three/four scalar quantities per texel (rgba)
- \(n \times m \) texture is simply a pixel image with 3(4) tuples stored at integer coordinates

\[\{ C[i, j] \mid 0 \leq i < n, 0 \leq j < m \} \]
Discrete textures

Advantages

- Easy to acquire with cameras, scanners etc.
- Generating complex textures using cameras and procedural methods simplifies photorealism
Discrete textures

Problems

- Large texture memory consumption
- Magnifying textures leads to blurriness
- Tiling a surface with textures is complicated
- The texture lighting is not necessarily coherent with the lighting in the scene
- Texture mapping on surfaces is in general not free of distortion (parameterization, CS 523)
- Texture values $C_{\text{tex}}(u,v)$ at positions (u,v) need to be reconstructed, interpolated and filtered
Discrete textures

Reconstruction

Red: screen pixel

Grey: texel

Magnification
(Oversampling)

Minification
(Undersampling)
Discrete textures

Reconstruction

1. nearest neighbor filtering

\[C_{\text{tex}}(u, v) = \begin{cases}
 C\left[\lfloor un \rfloor, \lfloor vm \rfloor \right] & : u<1, v<1 \\
 C\left[\lfloor n-1 \rfloor, \lfloor vm \rfloor \right] & : u=1, v<1 \\
 C\left[\lfloor un \rfloor, \lfloor m-1 \rfloor \right] & : u<1, v=1 \\
 C\left[\lfloor n-1 \rfloor, \lfloor m-1 \rfloor \right] & : u=1, v=1
\end{cases} \]
Discrete textures
Reconstruction

2. bilinear interpolation

\[\hat{u} = un - \lfloor un \rfloor \]
\[\hat{v} = vm - \lfloor vm \rfloor \]

\[C_0(u, v) = \hat{u} \ast C \left(\lfloor un \rfloor + 1, \lfloor vm \rfloor \right) + (1 - \hat{u}) \ast C \left(\lfloor un \rfloor, \lfloor vm \rfloor \right) \]
\[C_1(u, v) = \hat{u} \ast C \left(\lfloor un \rfloor + 1, \lfloor vm \rfloor + 1 \right) + (1 - \hat{u}) \ast C \left(\lfloor un \rfloor, \lfloor vm \rfloor + 1 \right) \]
\[C_{\text{tex}}(u, v) = \hat{v} \ast C_1(u, v) + (1 - \hat{v}) \ast C_0(u, v) \]
Bilinear interpolation is a good approximation.

Better: convolution with a sinc filter

\[
sinc(x) \equiv \begin{cases}
\frac{\sin x}{x} & \text{for } x = 0 \\
1 & \text{otherwise,}
\end{cases}
\]

See

- http://www.jhu.edu/~signals/sampling/
Discrete textures

- Nearest neighbor filtering is insufficient for texture minification
- Undersampling errors create aliasing artifacts
Discrete textures

Filtering

- Magnification (pixelation, blurring) is generally preferred over aliasing
- Achieved by reducing original texture res.
Discrete textures

Filtering

- **Footprint**: projection of the cell associated with a screen pixel \((x,y)\) to texture \((u,v)\) space

- Approximated by a parallelogram, spanned by the vectors

\[
\begin{align*}
 r_1 &= \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right)^t, \\
 r_2 &= \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)^t
\end{align*}
\]
Discrete textures

Filtering

- For real-time texture filtering
 - Replace the actual footprint by a union of simpler surfaces
 - Such that the filtered texture value can be pre-computed
Discrete textures

Filtering: mip-map

- A $2n \times 2n$ mip-map $C_{\text{mip}}[i,j]$ stores a 2D texture $C[i,j]$ of size $n \times n$ where $n = 2^k$
 - sequentially at half the previous resolution

![Diagram showing color channels in full resolution and next smaller resolution (filtered)]
Discrete textures
Filtering: mip-map

- Level $d=0$ are the original texture values
 \[C^0_{mip}[i, j] = C[i, j], \quad 0 \leq i, j < 2^k. \]

- All other levels are constructed by filtering the previous resolution (weighted summation)
 \[
 C^d_{mip}[i, j] = \frac{1}{4} \left(C^{d-1}_{mip}[2i, 2j] + C^{d-1}_{mip}[2i+1, 2j] + C^{d-1}_{mip}[2i, 2j+1] + C^{d-1}_{mip}[2i+1, 2j+1] \right) \\
 1 \leq d < k - 1 \text{ and } 0 \leq i, j < 2^{k-d}.
 \]
Discrete textures
Filtering: mip-map

- On level d of the texture hierarchy, 2^{2d} texels of the original texture are represented as a single texel.
- In the application, pixel values are interpolated from two levels depending on the size of the footprint.
- This known as trilinear filtering.
Discrete textures
Filtering: mip-map

- For a rectangular footprint, $l = \max(a, b)$
- Too small footprints (e.g. $(a+b)/2$) can lead to aliasing (too large footprints to blurring)
- Texture value at level $d = \log_2(l)$ is

$$C_{tex}(u,v,d) = BiLinInt(C_{mip}^d, u, v)$$

- When d is not an integer value
 - Interpolate between two levels $\lfloor d \rfloor$ and $\lceil d \rceil$

$$C_{tex}(u,v,d) = (d - \lfloor d \rfloor) \ast BiLinInt(C_{mip}^{\lfloor d \rfloor+1}, u, v) + (\lfloor d \rfloor + 1 - d) \ast BiLinInt(C_{mip}^{\lceil d \rceil}, u, v).$$
Discrete textures
Filtering: footprint assembly

- Square projection ignores anisotropy!
- Idea: use multiple mip-map accesses to cover the footprint parallelogram
- Anisotropic texture filtering in real time
 - Number of square parts determines the quality of the anisotropic filter
Discrete textures

Filtering: footprint assembly

Mip-mapping Anisotropic filtering
Texturing surfaces

- How to determine the texture coordinates for the vertices of a polygonal model?
 - They might be given by a modeler 😊
 - If not, embed the complex object in a simpler object for which a simple (u,v) parameterization exists
 - Project from the polygonal model onto the simpler object
 - Examples: cylinder, sphere, box
Cylinder mapping

- Parameterization: rotation angle ϕ and height h
- Points interior to the cylinder are projected orthogonally from the axis to the cylinder surface
 - Interpret (ϕ, h) parameters as (u,v) texture coordinates
Polar coordinates ϕ and θ

Project points (x,y,z) on the interior through the midpoint (x_s,y_s,z_s) onto the sphere

Interpret (ϕ, θ) as (u,v)
Sphere mapping

Box mapping